Introduction

Thank you for taking the Teaching to Learn Science Attitudes Survey.

The survey contains three sections with a total of 51 questions.

Part I: Background Information (2 to 6 questions)
Part II: Attitudes Towards Teaching Science (5 items, each with 5 questions)
Beliefs about the Nature of Science (5 items, each with 4-5 questions)

There are no right or wrong answers. Pick the answers that best describe you or your beliefs.

Part I: Background Information

* 1. Please enter your UNIQUE PROJECT ID from your consent form.
\square

2. Did you participate in Teaching to Learn in the Fall Semester?YesNo

* 3. How many years have you been teaching science (including this school year)?3 years or less4 to 10 yearsMore than 10 years

4. How many science courses did you take as an undergraduate?01-23-56 or more
5. How many college science courses have you taken as part of your graduate work or for your own professional development within the past 10 years?01-23-56 or more

* 6. Have you participated in any non-credit bearing science professional development experiences within the last 5 years PRIOR to your participation in the Teaching to Learn project?NoYes

Background: Continued

* 7. How interested are you in.....

| | Somewhat
 Interested | Mostly Not |
| :--- | :--- | :--- | :--- |
| Very Interested | Neutral | Interested\quad Not at all Interested |

Hearing about new scientific discoveries in the news?

Hearing about new inventions and technologies?

Part II: Attitudes Towards Teaching Science

* 8. Please indicate the degree to which you agree or disagree with each statement below.
When a student does
better than usual in
science, it is often
because the teacher
exerted a little extra
effort.
I am continually finding
better ways to teach
science.
Even when I try very
hard, I do not teach
science as well as I do
most other subjects.
When the science
grades of students
improve, it is often due
to their teacher having
found a more effective
teaching approach.
I know the steps
necessary to teach
science concepts
effectively.

Part II Attidtues Towards Teaching Science

*9. Please indicate the degree to which you agree or disagree with each statement below.
I am not very effective in
monitoring science
experiments.
If students are
underachieving in
science, it is most likely
due to ineffective
science teaching.
I generally teach science
ineffectively.
The inadequacy of a
student's science
background can be
overcome by good
teaching.
The low science
achievement of some
students cannot
generally be blamed on
their teachers.

Part II: Attitudes Towards Teaching Science

* 10. Please indicate the degree to which you agree or disagree with each statement below.
When a low-achieving
child progresses in
science, it is usually due
to extra attention given
by the teacher.
I understand science
concepts well enough to
be effective in teaching
elementary students.
Increased effort in
science teaching
produces little change in
some students' science
achievement.
The teacher is generally
responsible for the
achievement of students
in science.
Students' achievement
in science is directly
related to their teacher's
effectiveness in science
teaching.

Part II: Attitudes Towards Teaching Science

* 11. Please indicate the degree to which you agree or disagree with each statement below.

Strongly agree Agree Uncertain Disagree Strongly disagree
If parents comment that their child is showing more interest in science at school, it is probably due to the performance of their child's teacher.

I find it difficult to explain to students why science experiments work.

I am typically able to answer students' science questions.

I wonder if I have the necessary skills to teach science.

Effectiveness in science

teaching has little
influence on the achievement of students with low motivation.

Part II: Attitudes Towards Teaching Science

* 12. Please indicate the degree to which you agree or disagree with each statement below.
Given a choice, I would
not invite the principal to
evaluate my science
teaching.
When a student has
difficulty understanding
a science concept, I will
usually be at a loss as to
how to help the student
understand it better.
When teaching science,
I usually welcome
student questions.
I do not know what to do
to turn students on to
science.
Even teachers with good
science teaching
abilities cannot help
some kids to learn
science.

Part III: Beliefs About Science

* 13. Read each statement below and select your level of agreement with the statement.
Strongly Disagree Sort of Disagree \quad Note Sure Sort of Agree Strongly Agree

The primary reason for learning mathematics is to learn skills for doing science.

Getting the correct answer to a problem in the science classroom is more important than investigating the problem in a scientific manner.

In Grades K-9, truly understanding science in the science classroom requires special abilities that only some people possess.

Science is a constantly expanding field.

Theories in science are rarely replaced by other theories.

* 14. Read the following statements and indicate your level of agreement.
Strongly Disagree Sort of Disagree \quad Note Sure \quad Sort of Agree \quad Strongly Agree

To understand science, students must solve many problems following examples provided.

The use of technologies (e.g., calculators, computers) in science is an aid primarily for slow learners.

Science consists of unrelated topics such as biology, chemistry, geology, and physics.

The primary reason for learning science is to provide real-life examples for learning mathematics.

Part III: Beliefs About Science

* 15. Please indicate your level of agreement with each statement.
Strongly Disagree Sort of Disagree Note Sure Sort of Agree Strongly Agree

Some scientific

statements about
phenomena are not based on direct observations of the natural world, but instead are based on inferences and indirect evidence.

Observations of nature are not neutral but are motivated and guided by questions or problems that are derived from certain theoretical perspectives.

There is no single sequence of activities (such as the "Scientific Method") that scientists use to generate valid solutions or answers to scientific questions.

Scientists may interpret the same data differently because of the way they learn and think and because of their prior knowledge.

Part III: Beliefs About Science

* 16. For each of the following statements, choose your level of agreement with the statement.
Scientific knowledge Strongly Disagree Sort of Disagree Sors of Agree
involves making
observations of nature.
Scientists use their
creativity and
imagination while they
are collecting and
interpreting data gained
from scientific
investigations.
Scientists and scientific
research are affected by
the religious or ethical
views of the culture
where the work is done.
Many scientific models
used in research
laboratories (such as the
model of heat, the
neuron, DNA, or the
atom) are copies of
reality.
* 17. Please indicate your level of agreement with the following statements
Strongly Disagree Sort of Disagree Note Sure Sort of Agree Strongly Agree

There is a recipe-like set of steps that scientists follow, often called "The Scientific Method."

Scientific laws start as theories and eventually become laws after repeated and proven demonstration.

Science does not rely solely on empirical evidence.

Scientific knowledge is universal, and does not change from one place to another.

FINISH

Thank you for participating in this survey. You may now close your browser.

